A short description of the post.
file_csv. The data should be in the same directory as this file.Read the data into R and assign it to emissions
file_csv <- here("_posts",
"2021-02-26-reading-and-writing-data",
"co-emissions-per-capita.csv")
emissions <- read_csv(file_csv)
emissions.emissions
# A tibble: 22,383 x 4
Entity Code Year `Per capita CO2 emissions`
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.00191
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.0130
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.0380
# ... with 22,373 more rows
emissions data THENclean_names from the janitor package to make the names easier to work withtidy_emissionstidy_emissionstidy_emissions <- emissions %>%
clean_names()
tidy_emissions
# A tibble: 22,383 x 4
entity code year per_capita_co2_emissions
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.00191
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.0130
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.0380
# ... with 22,373 more rows
tidy_emissions THENfilter to extract rows with year == 1994 THENskim to calculate the descriptive statistics| Name | Piped data |
| Number of rows | 219 |
| Number of columns | 4 |
| _______________________ | |
| Column type frequency: | |
| character | 2 |
| numeric | 2 |
| ________________________ | |
| Group variables | None |
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|
| entity | 0 | 1.00 | 4 | 32 | 0 | 219 | 0 |
| code | 12 | 0.95 | 3 | 8 | 0 | 207 | 0 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| year | 0 | 1 | 1994.00 | 0.00 | 1994.00 | 1994.00 | 1994.00 | 1994.00 | 1994.00 | ▁▁▇▁▁ |
| per_capita_co2_emissions | 0 | 1 | 4.89 | 6.82 | 0.02 | 0.56 | 2.66 | 7.26 | 60.56 | ▇▁▁▁▁ |
tidy_emissions then extract rows with year == 1994 and are missing a code# A tibble: 12 x 4
entity code year per_capita_co2_emissions
<chr> <chr> <dbl> <dbl>
1 Africa <NA> 1994 1.04
2 Asia <NA> 1994 2.27
3 Asia (excl. China & India) <NA> 1994 3.23
4 EU-27 <NA> 1994 8.48
5 EU-28 <NA> 1994 8.66
6 Europe <NA> 1994 8.87
7 Europe (excl. EU-27) <NA> 1994 9.36
8 Europe (excl. EU-28) <NA> 1994 9.22
9 North America <NA> 1994 14.1
10 North America (excl. USA) <NA> 1994 4.98
11 Oceania <NA> 1994 11.5
12 South America <NA> 1994 2.06
Entities that are not countries do not have country codes.
tidy_emissions THENfilter to extract rows with year == 1994 and without missing codes THENselect to drop the year variable THENrename to change the variable entity to countryemissions_1994emissions_1994 <- tidy_emissions %>%
filter(year == 1994, !is.na(code)) %>%
select(-year) %>%
rename(country = entity)
per_capita_co2_emissions?emissions_1994 THENslice_max to extract the 15 rows with the per_capita_co2_emissionsmax_15_emittersmax_15_emitters <- emissions_1994 %>%
slice_max(per_capita_co2_emissions, n = 15)
per_capita_co2_emissions?emissions_1994 THENslice_min to extract the 15 rows with the per_capita_co2_emissionsmin_15_emittersmin_15_emitters <- emissions_1994 %>%
slice_min(per_capita_co2_emissions, n = 15)
bind_rows to bind together the max_15_emitters and `min_15_emittersmax_min_15max_min_15 <- bind_rows(max_15_emitters, min_15_emitters)
max_min_15 to 3 file formats.max_min_15 %>% write_csv("max_min_15.csv") # comma_separated values
max_min_15 %>% write_tsv("max_min_15.tsv") # tab separated
max_min_15 %>% write_delim("max_min_15.psv", delim = "|") # pipe-separated
max_min_15_csv <- read_csv("max_min_15.csv") # comma-separated values
max_min_15_tsv <- read_tsv("max_min_15.tsv") # tab separated
max_min_15_psv <- read_delim("max_min_15.psv", delim = "|") # pipe-separated
setdiff to check for any differences among max_min_15_csv, max_min_15_tsv, and max_min_15_psvsetdiff(max_min_15_csv, max_min_15_tsv, max_min_15_psv)
# A tibble: 0 x 3
# ... with 3 variables: country <chr>, code <chr>,
# per_capita_co2_emissions <dbl>
Are there any differences?
country in max_min_15 for plotting and assign to max_min_15_plot_dataemissions_1994 THENmutate to reorder country according to per_capita_co2_emissionsmax_min_15_plot_data <- max_min_15 %>%
mutate(country = reorder(country, per_capita_co2_emissions))
max_min_15_plot_dataggplot(data = max_min_15_plot_data,
mapping = aes(x = per_capita_co2_emissions, y = country)) +
geom_col() +
labs(title = "The top 15 and bottom 15 per capita CO2 emission",
subtitle = "for 1994",
x = NULL,
y = NULL)

ggsave(filename = "preview.png",
path = here("_posts", "2021-02-26-reading-and-writing-data"))
preview.png to yaml chuck at the top of this filepreview: preview.png